

Photonics21 Strategic Research and Innovation Agenda

19 Mayo 2021

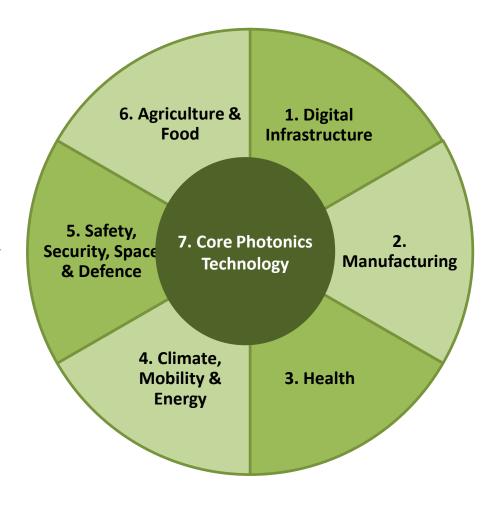
New Horizons

New Horizons

- November 2020 Photonics21 Partnership releases a new Strategic Research and Innovation Agenda, that proposes a vision and path forward, a long-term strategy for the next seven years 2021-2027.
- The socio-economic challenges that must be addressed to achieve European ambitions in key strategic sectors of the European economy are highlighted. The major research and innovation Challenges for the European Photonics community in each sector are detailed.

Securing Europe's technological sovereignty through Photonics

Multi-annual Strategic Research and Innovation Agenda of the Horizon Europe Photonics Partnership


https://www.flipsnack.com/Photonics21/photonics-strategic-research-and-innovation-agenda.html

Key strategic sectors

Key strategic sectors

1. Digital Infrastructure

- **Zero-touch operation:** Photonic networks augmented by Al/machine learning
- Instantaneous response: Low and deterministic latency in the optical network connections
- Access anywhere: Fibre-to-the-Home, FttRadio-Antenna, 'Fibre-in-the-sky' optical satellite comms, LiFi
- Intrinsic security: The resiliency of optical network infrastructure, secure transmission of data, complemented by quantum communications infrastructure covered by quantum flagship and other projects (cybersecurity, Sendate)
- Sustainable capacity growth: In a 5G and datacentre centric network, capacity in fibre networks has to 'keep-up' – hyper-scalability, power consumption, network cost, operational efficiency, green network.

1. Digital Infrastructure

Roadmap:

	2021	2022/2023
Overview Technology Challenges (user view)	Zero-touch operation	Instantaneous response
Critical milestones to move from Science to Market	Open platforms, open interfaces & APIs	The growth of latency critical applications
Photonics Research (R) & Innovation (I) Challenges	 Al-enabled optical networks: Interoperable optical network nodes based on open HW and SW (white boxes) Dynamically self-configuring optical network technologies based on AI/ML for control, optimisation, and fault detection Optical devices enabling energy- efficient telemetry and analytics in optical networks 	 Deterministic latency comms: Time-sensitive optical networking technologies Latency-optimised optical interconnects Optical precision timing solutions Integrated optical comms for demanding sensor/actuator systems (e.g. 3D machine vision) Optical robot and sensor networks Ultra-dynamic networks Optical solutions for industrial internet applications Optical spectrum and Ethernet services with hard service guarantees Large scale, fast optical and hybrid e/o switches Ultra-dynamic photonic devices (laser, cross-connects)
Joint actions required with other disciplines (e.g. Artificial Intelligence) or fields (e.g. robotics)	Artificial Intelligence	Factories of the Future, robotics

2. Manufacturing

Digital	Green	Sustainable
 Fast and multi parallel high power laser beam handling High-speed digital controlled materials processing Simulation-based digital process chain development and optimisation Rapid manufacturing of complex individualised products Big data and AI-based production and process development First time right production by high resolution and high- speed metrology and machine technology 	 CO₂ emission reduction within the process chain by highly efficient and material- specific laser processing tools Lightweight and bio-based components and their manufacturing Substitution of carbon-based production and hazardous materials Resource optimisation by material-specific usage and processing Implementation of biological transformation elements in production and end products 	 Future proof ecosystem by technological unique selling proposition for flexible and eco-friendly manufacturing Comprehensive integration of process chain and materials and product life cycle Manufacturing of affordable individualised complex products Long-lasting flexible re-use of production equipment in fast product life cycles Knowledge-based regional and European technical networks

2. Manufacturing

- Laser beam sources: due to the increasing demands on process speed and quality, it will be essential to increase system performance – and at the same time increase the quality of optical fibres and elements – in coatings and laser components.
- Beam guidance and beam shaping: for the integration of the new beam sources, powerful
 optical fibres and beam guidance will be required, especially for the extended wavelength and
 pulse duration ranges that are expected.
- Industry 4.0: the key challenge is that laser systems become perfectly embedded in the digital process chain.
- From bits to photons: close connection between processes, devices and systems could be achieved by methods like digital twins.
- Quality control and NDT: the major challenge is to ensure high product yield while simultaneously maintaining high quality.
- Laser specific materials development: short interaction times and high cooling rates involved in laser material processing require materials and alloys specially designed for optimum part performance.
- Skilled people and flexible infrastructure.

2. Manufacturing

Roadmap:

	2021	2022/2023	2024/2025	2026/2027
Overview Technology Challenges	High speed processingCO2 emissioWeight reductionMaterial saveDigitalisation of productionSimulation saveAgile manufacturing and connected productionIndividualisation and personalisation of products and			d production
Critical milestones to move from Science to Market	High-speed scanners / tailored beam developments and applications	Simulation and digitalisation	Connected production	Global environmental goals
Photonics Research (R) & Innovation (I) Challenges	 High energy and his High brilliance diod Lasers for the gene High power mid-in Multibeam lasers Beam delivery, shap Novel optical fibres Non-mechanical hi Re-configurable an Rapid monitoring a Focusing and imaging of energy Multibeam guiding Miniaturised intercher industry 4.0 Connectivity of lase (also intelligent fibre or temperature) Integration of sense Parallel processing Data and knowledg CAM-modules for the sense 	ind components for hi ghly agile ultra-short p le lasers (CW and puls ration of coherent X-r frared lasers with wave ing and deflection system for use at wavelength igh-speed beam scan id programmable beam nd quantitative feedbat ing optics facing the A and switching hangeable optical processing for high throughput pe management for las materials processing	ed) with different wave ays elengths greater than 3 stems ns greater than the UV ning systems m shaping systems (tai ack systems abbe limit for highest s cessing systems ion in manufacturing p egrated functionality e	elengths 1 µm (and beyond 2µm) lored light) patial resolution blatforms .g. back reflection

2. Manufacturing

o: 🔤	2021	2022/2023	2024/2025	2026/2027
	 On-line non Process optiand multi-m Big Data cor Data analytic gathered from 	ol and NDT rocess control -destructive testing of las misation based on novel i iodal metrology relation, meta modelling cal techniques / mathema im available measurement ition imaging)	in-line / at-line photor and quality prediction itical methods to optin	nic measurement
	 Alloys and m Photonic sp 	materials development naterials for additive manu ecific materials for electro mance materials for laser	onics	
Joint actions required	s EFFRA; Robot	ics; SPIRE		

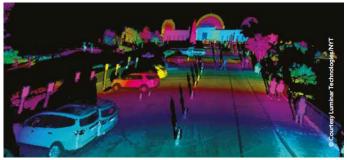
3. Health

- Advanced Photonic tools for life science industry as well as endusers (for example, medical doctors or research):
 - Photonic tools for real-time proteomics, genomics, metabolomics;
 - Accelerating and enabling photonic tools for the pharmaceutical industry, understanding, regenerative medicine, personalised medicine, high throughput, high-content screening;
 - Photonic tools for understanding the origin of diseases beyond risk factors, finding pathways for treatment, photonics for health (nutrition, lifestyle, environmental influences, toxicity).
- Affordable photonics-based real-time diagnostics: to stratify and classify disease status monitor and assess treatment response for the practical implementation of precision medicine; optogenetics for the treatment of brain or heart diseases; photonics for interventional guidance (augmented reality); multiscale access to the body (depth of penetration/optical resolution)
- Mobile photonics devices and advanced biosensors for instant point-of-care (-use) detection/diagnostics and treatment, that measure the patient's medical condition, transportable photonic devices for monitoring environmental parameters

3. Health

Roadmap:

	2021/2022	2023/2024
Overview Technology Challenges	Mobile Biosensors	Photonic diagnostics and intervention
Critical milestones to move from Science to Market	 Biocompatible materials need to be found/investigated. Further convergence and integration of photonics, electronics and microfluidics: Miniaturisation of optical components to enable smaller on-chip solutions (in-body devices with volume < 1cm3) Low cost miniaturised broadband sources and detectors Demonstration of higher effectiveness for state of the art reliability and specificity in in-vivo conditions 	 Miniaturisation and integration of optical components to build a 3D label-free histopathology and treatment modality Imaging platform to measure cell/brain oxygenation mountable on a cart Integration of optical, electronic and microfluidic components for POC systems for advanced analysis of body liquids to fit in a shoebox
Photonics Research (R) & Innovation (I) Challenges	Improve optical contact for on-body/in-body biosensors (stable, reproducible and continuous) (R) Biomarkers research (R) Develop mobile biosensors to the next level (body liquids, but also portable image systems) (R & I)	3D label-free histopathology and treatment modality relying on augmented reality – • photonic components (R) • system (I) Advanced POC Device for fast analysis of body liquids (I) Imaging platform to measure cell/ brain oxygenation (10x more precise than current gold standard) (R)
Joint actions required with other disciplines (Artificial Intelligence) or fields (robotics)	ETP: EuMaT for biocompatible materials ETP 4 HPC for the development of data handling and evaluation ETP Nanomedicine (biomarkers)	ETP Nanomedicine (biomarkers); European Technology Platform on Smart Systems Integration EPoSS, ETP 4 HPC for the development of data handling and evaluation



4. Climate, Mobility & Energy

Major challenges and technological needs:

- Photonics sensing: Improved and robust sensing capabilities at affordable costs are required (i.e. point-cloud image). A considerable gap to be covered is to get an improved, fully performant lidar sensor, with the required spatial resolution and range that allow motorway to travel at normal traffic flow.
- Battery health monitoring: Technology for measuring the battery state of charge, state of health, and inside temperature should be safe in case of vehicle collisions or other damages to the battery pack. A beneficial approach appears to be based on fibre optics which are not electrically conducting.
- Photonic Integration for Sensors: Photonic integration is a key enabler to overcome these and to create embedded sensing systems suitable for compact, robust and cost-effective multiphysical sensing
- Affordable and efficient Adaptive Driving Beam (ADB) for mainstream vehicles.

4. Climate, Mobility & Energy

Major challenges and technological needs:

- Communication with Light: low-cost, reliable and small components for light-based communication (LiFi) communications, together with the implementation of V2V and V2I communications will enable new capabilities of interaction between various IT devices, machines, vehicles, other road users, and the infrastructure through high-speed, short-range communication.
- Immersive Interaction and Occupant Monitoring
- Micro displays

4. Climate, Mobility & Energy

Roadmap: Mobility


MINISTERIO

DE CIENCIA

EINNOVACIÓN

GOBIERNO

DE ESPAÑIA

		2021	2022/2023
4. Climate, Mobility & Energy Roadmap: Lightning and Organic photovoltaic	Overview Technology Challenges	 Cost-effective VHF and embedding High-efficiency luminaires and light sources for energy saving Semiconductor-integration and System in a Package to save resources Sensing and energy harvesting/ wireless power Deep UV-LEDs for Corona prevention IR based sensors OPV efficiency + stability increase Next-generation freeform optics for energy-efficient luminaires LED in X (in cars, textiles,) 	 Multicolour high pixel density dice New materials for light emitters, detectors, OPV, for energy saving Transparent displays, OPV, luminaires Visible wavelength VCSEL + optics System in Package for higher power LEDs (resource-saving) 3D printed optics for resource-saving Horticultural lighting Validation and verification of HCL
	Critical milestones to move from Science to Market	 Complex ecosystem Proof of manufacturability Proof of business case Cost for manufacturing low enough Consumer persuaded of a new concept Understand the real demand of consumer (as part of HCL) Seamless product integration 	 Scientific and business community able to judge the market/technology Open source vs. alternative implementations decided Standardization
GOBIERNO DE ESPANA E INNOVACIÓN	Photonics Research (R) & Innovation (I) Challenges	 Extension of VHF to SELV, higher power, wide output-range Cost-effective supply for loT-devices, most probably also based on VHF Closed-loop solutions for colour-temperature Sensor fusion Process improvements Realistic lifetime models 	 Sensorics/camera with hyper- spectrum analysis (IR, UV) => cheap system-approach Wireless power (electromagnetic- resonance and radio) for sensors and small luminaires

5. Safety, Security, Space & Defence

Major challenges for photonics-empowered, autonomous and resilient dual-use IoT microsystems include:

- **Systems, not components:** integration of the photonic parts into full products.
- **Miniaturisation:** of utmost importance for its integration into IoT microsystem products.
- Cost-effectiveness: to achieve the lowest fabrication cost of photonic sub-systems, maximum use of manufacturing techniques related to semiconductor production should be made.
- Platforms, not individual solutions: for utmost cost-efficiency, minimum NRE (Non-Recurring Engineering, a onetime cost to research, design, develop and test a new product) is mandatory.
- **Al-empowerment:** only insights and not raw data should be communicated, analysis and interpretation of the acquired data must occur within the photonic subsystem to reduce external bandwidth requirements.
- Multi-parameter sensing: Future IoT solutions will lie in the simultaneous acquisition of data, in the form of massively parallel multi-parameter/multi-analyse sensor systems.
- Maintenance-free: during long periods or even during full life-time of the system.
- Resilience/robustness; Low power; Eco-Friendliness;
- Focus on high-growth/high-value markets

5. Safety, Security, Space & Defence

Roadmap:

	2021	2022/2023	2024/2025	2026/2027
Overview Technology Challenges	 Al empower ment of photonic IoT solutions New materials and fabrication processes for NIR/MIR/FIR IoT components and sub-systems 	Integration of cost-effective, low-power, miniaturized multi-sensor IoT platforms. Demonstration with cloud-based AI/ML engines	Novel concepts for "smart" multi- sensor photonic IoT systems with built-in AI data interpretation: Data at the edge, i.e. cloud-free autonomous IoT solutions	Successful demonstrations of maintenance-free, self-calibrating, fault-tolerant, self-diagnosing, "smart" multi- sensor photonic dual-use IoT solutions
Critical milestones to move from Science to Market	Alliances created between partners in Photonics, Al/ ML, security/ safety and defence	PoC studies and demonstrations in selected high- potential dual-use applications and markets	Field tests in selected high- potential dual-use applications and markets	International market penetration with first dual-use IoT components and systems
Photonics Research (R) & Innovation (I) Challenges	 Lower costs of NIR/MIR/FIR IoT components and sub-systems. Value creation through AI/ML empowerment of photonic IoT solutions Identification: High-value dual-use applications 	 Miniaturize multi-sensor PIC-based photonic sensing platforms Select most promising applications for cloud-based dual-use proof-of-concept demonstrations 	 Make IoT devices "smart" by embedding AI/ML engines Fabricate/ demonstrate cost-effective, autonomous high-value IoT solutions without cloud-computing 	 Optimize user value through robust, self- calibrating "smart" IoT solutions Focus on "green" products, including recyclable or biodegradable consumables

6. Agriculture & Food

- Image-based systems: innovation drivers in agriculture and food. Demands for robust photonic imaging systems under outdoor conditions are high. imaging systems strongly support process automation: the evaluation of the sensor interpretation is crucial for the admission of autonomy (field robotics).
- Integrated Photonics Technologies for Agrofood: Fibre Optic sensing, sensors for forestry, hybrid lasers, etc.
- Lasers and lighting devices; tailored light for agrifood applications: LED lightning in greenhouses, optical sensors, light sources and laser technology.

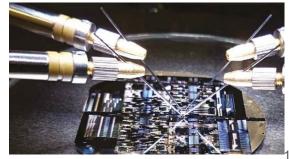
6. Agriculture & Food

Roadmap:

MINISTERIO DE CIENCIA E INNOVACIÓN

AGENCIA ESTATAL DE

GOBIERNO DE ESPAÑA

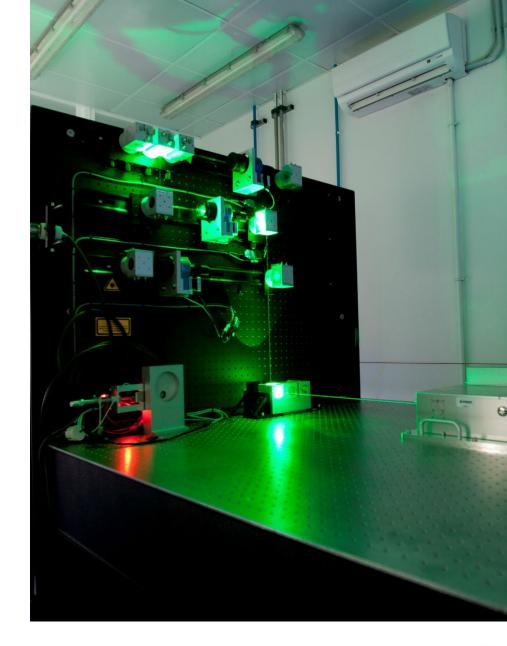

	2021	2022/2023	2024/2025
Overview Technology Challenges	Mapping and gapping: • Al & photonic solutions • Identify powerful applications	Mapping & gapping: • Continuous alignment of crossover research agendas • Powerful applications identified	 Fingerprinting of plants/food products with novel concepts for "smart" multi-analytic photonic systems with built-in AI/ML data interpretation
Critical milestones to move from Science to Market	• Report & new alliances / projects launched in crossover Photonics & AgTech	• Report & prototype demonstrations in projects	 A clear increase in photonic industry sales in AgTech
Photonics Research (R) & Innovation (I) Challenges	 Precision agriculture and novel sensors: User benefits Vertical Farms & autonomous systems through AI/ML empowerment of photonics solutions: User benefits 	 Miniaturisation/ featherweight sensor developments Select most promising applications for cloud-based proof-of-concept demonstrations 	 Make sensor systems "smart" by embedding AI/ ML engines Fabricate/ demonstrate cost-effective sensors aimed for a large number of sales (> 1000)

7. Core Photonics Technology Platforms

- Systems, not just components: we must provide effective means for the combination of technologies to achieve overall systems goals
- Miniaturisation: Many applications require subsystems that are very small so that they can be integrated into other devices such as sensor elements and smartphones
- Cost-effectiveness: The power of photonic integration to achieve high performance at minimum cost will continue to provide major opportunities for innovative products
- Platforms, rather than individual solutions: This is the key to achieving maximum return on investment and reach the largest number of market sectors in the shortest possible time
- Robustness and reliability: Many photonic systems will be embedded in safety-critical systems where reliability and resilience are mandatory
- **Power efficiency**, to mitigate the environmental impact of large-scale electronic systems deployment and allow new applications which are self- or battery-powered
- Eco-friendliness
- Accessibility

7. Core Photonics Technology Platforms

_	-		
Roa	dm	an	


	2021	2022/2023	2024/2025	2026/2027		
Overview (Technology) Challenges	Photonic Components and Systems Enhanced functionality, spectral coverage, performance to enable new applications New organizational frameworks to facilitate route to market					
Critical milestones to move from Science to Market	Horizon 2020 pilot lines successful and sustainedInnovation Factory establishedEnhanced production technologies>50 products in market through Innovation Factory					
Photonics Research (R) & Innovation (I) Challenges, Education (E) & Training (T) Challenges	Photonic Systems Integration PICs for sensing; PICs for communications Pervasive Photonics in Next-Generation Electronic Systems Enabling component technologies					
Joint actions required with other disciplines (e.g. Artificial Intelligence) or fields (e.g. robotics)		crofluidics, imaging se nt, techniques, materi national liaison		⇒		

Santiago Royo Secretaría Técnica Fotónica21 secretaria@fotonica21.org) @fotonica_21

www.fotonica21.org

